Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots.

نویسندگان

  • D E Otzen
  • O Kristensen
  • M Proctor
  • M Oliveberg
چکیده

The interpretation of folding rates is often rationalized within the context of transition state theory. This means that the reaction rate is linked to an activation barrier, the height of which is determined by the free energy difference between a ground state (the starting point) and an apparent transition state. Changes in the folding kinetics are thus caused by effects on either the ground state, the transition state, or both. However, structural changes of the transition state are rarely discussed in connection with experimental data, and kinetic anomalies are commonly ascribed to ground state effects alone, e.g., depletion or accumulation of structural intermediates upon addition of denaturant. In this study, we present kinetic data which are best described by transition state changes. We also show that ground state effects and transition state effects are in general difficult to distinguish kinetically. The analysis is based on the structurally homologous proteins U1A and S6. Both proteins display two-state behavior, but there is a marked difference in their kinetics. S6 exhibits a classical V-shaped chevron plot (log observed rate constant vs denaturant concentration), whereas U1A's chevron plot is symmetrically curved, like an inverted bell curve. However, S6 is readily mutated to display U1A-like kinetics. The seemingly drastic effects of these mutations are readily ascribed to transition state movements where large kinetic differences result from relatively small alterations of a common free energy profile and broad activation barriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From snapshot to movie: phi analysis of protein folding transition states taken one step further.

Kinetic anomalies in protein folding can result from changes of the kinetic ground states (D, I, and N), changes of the protein folding transition state, or both. The 102-residue protein U1A has a symmetrically curved chevron plot which seems to result mainly from changes of the transition state. At low concentrations of denaturant the transition state occurs early in the folding reaction, wher...

متن کامل

Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?

To what extent do general features of folding/unfolding kinetics of small globular proteins follow from their thermodynamic properties? To address this question, we investigate a new simplified protein chain model that embodies a cooperative interplay between local conformational preferences and hydrophobic burial. The present four-helix-bundle 55mer model exhibits protein-like calorimetric two...

متن کامل

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

Distinguishing between cooperative and unimodal downhill protein folding.

Conventional cooperative protein folding invokes discrete ensembles of native and denatured state structures in separate free-energy wells. Unimodal noncooperative ("downhill") folding, however, proposes an ensemble of states occupying a single free-energy well for proteins folding at >/=4 x 10(4) s(-1) at 298 K. It is difficult to falsify unimodal mechanisms for such fast folding proteins by s...

متن کامل

Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins.

Quantitative description of how proteins fold under experimental conditions remains a challenging problem. Experiments often use urea and guanidinium chloride to study folding whereas the natural variable in simulations is temperature. To bridge the gap, we use the molecular transfer model that combines measured denaturant-dependent transfer free energies for the peptide group and amino acid re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 20  شماره 

صفحات  -

تاریخ انتشار 1999